Real-space parallel density matrix renormalization group
نویسندگان
چکیده
منابع مشابه
Time-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملtime-dependent real-space renormalization group method
in this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent hamiltonians. we drive the time-dependent recursion relations for the renormalized tight-binding hamiltonian by decimating selective sites of lattice iteratively. the formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملDensity-matrix renormalization group algorithms
The Density Matrix Renormalization Group (DMRG) was developed by White [1, 2] in 1992 to overcome the problems arising in the application of real-space renormalization groups to quantum lattice many-body systems in solid-state physics. Since then the approach has been extended to a great variety of problems in all fields of physics and even in quantum chemistry. The numerous applications of DMR...
متن کاملThe density-matrix renormalization group
The density-matrix renormalization group sDMRGd is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly become the method of choice for nume...
متن کاملDynamical density-matrix renormalization group
The dynamical density-matrix renormalization group (DDMRG) method is a numerical technique for calculating the zero-temperature dynamical properties in low-dimensional quantum many-body systems. For the onedimensional Hubbard model and its extensions, DDMRG allows for accurate calculations of these properties for lattices with hundreds of sites and particles and for any excitation energy. The k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2013
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.87.155137